Errata for Competitions through the ' 99 -‘00 MATHCOUNTS Season

1999-2000 MATHCOUNTS Competition Season (last updated on August 5, 2004)

No known errors. Please contact us if you are aware of errors that should be documented here.

1998-1999 MATHCOUNTS Competition Season (last updated on August 5, 2004)

- Chapter Competition, Team Round \#4: Although the published answer is mathematically correct, the only acceptable answer for this problem is 2304π (cubic centimeters).

1997-1998 MATHCOUNTS Competition Season (last updated on August 5, 2004)

- National Competition, Team Round \#8: As this question did not contain the word positive, negative possibilities had not been excluded. Therefore, -99 was accepted as the only correct answer, and the published answer of 24 was not accepted. (Note: By accepting this new answer, the order of the top ten teams did not change.)

1996-1997 MATHCOUNTS Competition Season (last updated on August 5, 2004)

- School Competition, Sprint Round \#15: The graphic that is provided is incorrect. Consider the quadrilateral bounded by lines RQ, RS, l and k. Angle S of this quadrilateral should be marked as 130 degrees. (This is the angle that is adjacent to angle RSQ and below line l.)
- Chapter Competition, Sprint Round \#27: The final sentence, "Express your answer as a common fraction," should not appear. Please strike this sentence from the competition.
- State Competition, Sprint Round \#9: The correct answer is 112 (not 48 as published).
- State Competition, Sprint Round \#24: The final sentence, "Express your answer in simplest radical form," should not appear. Please strike this sentence from the competition.
- National Competition, Target Round \#5: The correct answer is $1 / 6$ (not 2/17 as published).

1995-1996 MATHCOUNTS Competition Season (last updated on September 15, 2004)

- State Competition, Countdown Round \#29: The negative two-digit numbers are not taken into account for the answer that is given. Therefore, as written, the answer to the problem should be 9 (zero).
- National Competition, Team Round \#4: The correct answer is 6 (not 7 as published in some places).

1994-1995 MATHCOUNTS Competition Season (last updated on September 15, 2004)

- State Competition, Sprint Round \#7: This problem did not state that the numbers must be positive, therefore, negative numbers must be taken into consideration. The correct answer, then, is -99 since $-990 \div 10=-99$.

1993-1994 MATHCOUNTS Competition Season (last updated on September 15, 2004)
No known errors. Please contact us if you are aware of errors that should be documented here.

1992-1993 MATHCOUNTS Competition Season (last updated on September 19, 2008)

- Chapter Competition, Countdown Round \#19: The ordered pair $(99,1)$ would be an acceptable answer.
- Chapter Competition, Countdown Round \#60: The word "largest" should be inserted before "possible."
- State Competition, Sprint Round \#16: The correct answer is $2 \frac{1}{2}$ or $2 \frac{1}{2}$ inches.
- State Competition, Sprint Round \#23: The term "numbers" must be replaced with "integers" to avoid an infinite number of answers. The question should be phrased, "If x and y are positive integers less than 20 for which $x+y+x y=76$, what is the value of $x+y$?

1991-1992 MATHCOUNTS Competition Season (last updated on September 15, 2004) No known errors. Please contact us if you are aware of errors that should be documented here.

1990-1991 MATHCOUNTS Competition Season (last updated on September 19, 2008)

- Chapter Competition, Sprint Round \#24: Because the phrase "some nickels" is ambiguous, the question may result in protests. Coordinators were asked to either (1) throw out the question, (2) give every student credit for the question or (3) accept both 4 and 5 as correct answers.
- State Competition, Sprint Round \#11: The answer should be 2, not 3 .

1989-1990 MATHCOUNTS Competition Season (last updated on September 15, 2004)
1988-1989 MATHCOUNTS Competition Season (last updated on September 15, 2004)
1987-1988 MATHCOUNTS Competition Season (last updated on September 15, 2004)
No known errors. Please contact us if you are aware of errors that should be documented here.

1986-1987 MATHCOUNTS Competition Season (last updated on September 15, 2004)

- Chapter Competition, Written Round \#17: The equation in this question should read: $f(x)=x^{2}-3 x-6$.
- Chapter Competition, Written Round \#31: Missing an inequality sign. The question should be, " $3 x-1 \leq 13$."
- Chapter Competition, Optional Round \#1: Missing a division sign. The question should read, "What whole number is equivalent to $9500 \div 250$?"
- Chapter Competition, Optional Round \#2: Also missing a division sign. The equation in this question should read, " $56+4 \div 2$."

1985-1986 MATHCOUNTS Competition Season (last updated on September 15, 2004)

- Chapter Competition, Written Round \#25: The acceptable answers are 100-25 or $25(4-\pi)$. The optional units are sq. units.

